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The kinetic rate law for a a4 model in the order/disorder limit 

S Padlewskitt: and S Dattaguptat 
t Schwl of Physical Sciences, Jawaharlal Nehru Uriversity, New Delhi 110067, India 
$ Theoly of Condensed Matter, Cnvendish Laborato~~,  Madingley Road, Cambridge CB3 
O H E ,  UK 

Remd 21 June 1991, in 6naI form 3 Febmaay 1992 

A k h d .  A kinetic rate law is established for a Q' model on a lattice when the system 
is initially placed in a configurational state far away from thermal equilibrium. Ihe 
discussion is bgsed on a Fokker-Planck equation, which is used for describing the relaxa- 
tion of the noncollSerVCd order parameter. On appwng a mean-6eld approximation, 
the N coupled inlepdifferential equations reduce to one selfconsistent equation for 
the order parameter. The relaxation of the order parameter in a quenching procedure is 
next compared with a molecular dynamic simulation of the same approximate potential. 
The agreement is excellent. Finally, in the limit of a very deep on-site potential. the rate 
equation of the order parameter is shown to reduce Lo the well known Glauber equation 
for a hvo-state king system and by following the Kramers treatment, one also deduces 
the rate of jumps from one well Lo the other. The latter rate is found to be small, as 
mpened. Also mnsidered in brief is the COnSeNed order parameter relaxation behaviour 
in the order/disorder limit, which is shown to yield the Kawasaki rate quation. 

1. Introduction 

During the last decade the @* model on a lattice has been widely employed for 
modelling structural phase transitions. The model is able to cover a wide range of 
phenomena, from the so-called soft-mode behaviour (SO,, NaNO,, biphenyl, etc) to 
the order/disorder type of phase transition (NaNO,, CINH,). In the soft-mode limit 
the phase transition can be described in terms of the renormalized phonon theory 
( B m  1980, Bruce and Cowley 1980). In this the system is found to possess a mode of 
lattice vibration that softens as the temperature decreases towards T,. At the critical 
temperature this mode freezes completely, and so a static field of displacement of 
the atom positions is induced within the structure. In the other extreme the system 
is described by an order/disorder dynamical behaviour characterized by atoms or 
clusters fluctuating between two more or less discrete states (Bruce 1980). This paper 
is devoted to the order/disorder case. 

For the following, we consider the Hamiltonian form 

with 
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The parameters a , y  represent the on-site energy parameters (y > 0) and the Jii 
represent the painvise intersite interactions. The variable U j  can stand for the rota- 
tion of the tetrahedral ,cluster SO, in quartz or the torsion of benzene rings relative 
to each other in crys&lline biphenyl'(Benckert 1987). The parameter m is a cor- 
responding generalized inertia. The coupling terms J j j  determine the wave vector 
at which the phase transition occurs. By considering strong competition between 
the J i j ,  for example, one recovers the J a w e n  model used for modelling displacive 
modulated structure (Janssen 1986). For the present purpose we only consider a 
ferrodistortive phase transition, which can be obtained by setting all the Jij  positive 
in equation (1.2). 

The on-site potential controls the dominant behaviour of the system. In particular 
we have shown recently (Padlewski et a1 1991) that a / J  > 0 leads to a soft-mode 
type of behaviour whose displacement on lowering T freezes at 7,. In the opposite 
case, for a double-well, on-site potential with a / J  < 0 we have established that the 
Q4 model describes an order/disorder dynamic system because it becomes like an 
king model with Vi near the bottom of one or the other well. 

In this paper we study the relaxation behaviour of the system described by the 
Hamiltonian (1.1) when it is initially placed in a state far away from thermal equilib- 
rium. Our work has been motivated~by the recent revival of interest in mineralogy 
for systems away from equilibrium (Salje 1988) and may be viewed as being comple- 
mentary to our earlier study of discrete king-like systems (Dattagupta et a1 1991a, b). 
Although the relaxational time scale is extremely short, Le. of the order of a phonon 
process for a/ J > 0, it can reach geological proportions in the order/disorder limit 
a f J a 0 .  

In our present appmach we mainly discuss the dynamic process of (1.1) relevant 
for a system characterized by a non-conserved order parameter. We show that in 
the ogerldisorder limit a / J  a 0, the rate equation of the order parameter takes 
the form of the well known Glauber rate equation for a two-state Ishg system. We 
also address this problem with a conserved order parameter (section' 5) where we 
recover the mwasaki,  rate equation in the order/disorder limit. Thus the present 
study provides a clear link between the kinetics of continuum and discrete models 
and helps in the understanding of the domains of applicability of different analytical 
and numerical schemes. 

The plan of the paper is as follows. In section 2 we derive a rate equation 
of a nonanserved order parameter. This can be done by considering a Fokker- 
Planck equation characterizing the relaxation of the distribution function in the high- 
friction limit appropriate to the Hamiltonian (1.1). The rate equation of the order 
parameter involves a set of N coupled integrodifferential equations, whose solution 
is transparent if one uses a mean-field approximation (MFA). This reduces the problem 
to a unique self-consktent equation. The mean-field solution &in also' be recovered 
exactly by considering an approximate potential @MF where each variable Ui interacts 
identically with all others with 
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J i j  = J / N  > 0 for all ( i , j )  neighbours 

and N is the total number of sites. The introduction of the potential QMF, in 
fact, makes perfect physical sense if we note that many minerals possess long-range 
interactions (salje 1990). In section 3 we compare the relaxation of the nonanserved 
order parameter predicted for aMF with a molecular dynamics simulation (MDS) of 
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the Hamiltonian with the coupling terms (1.3). One finds a very good agreement, 
strengthening our confidence in the MFA. However, very deep on-site potentials are 
not accessible to ms and therefore, in section 4, we show analytically how the rate 
equation of the order parameter reduces to the form of the Glauber rate equation 
for a discrete two-state king system (Dattagupta ef a1 1991a, b). This situation is 
relevant for a/J < 0 and kT < 'hump size' of the double well. In this limit 
we deduce the Kramers rate of activation from one well to the other for the entity 
U;. In section 5 we consider the conserved order parameter case. We also derive 
a rate equation for the order parameter. In the order/disorder limit we recover the 
Kawasaki rate equation for a two-state king system. Finally, our principal conclusions 
are summarized in section 6. 

2. Rate equation for the order parameter 

In this section we establish the rate equation for the nonconserved order parameter 
when the system (1.1) is initially placed in a state that is far away from thermal 
equilibrium. It suffices for our purpose to neglect the momentum variables, in the 
high-friction limit, as we are only interested in the order parameter kinetics. The 
corresponding equation for the distribution function W (  { U:}, t) with {U;} repre- 
senting a configuration of all entities Ui, has the well known Fokker-Planck structure 
(Risken 1989) 

Equation (21) has the built-in detailed-balance condition, which ensures that 
W ( { U ; } , t )  approaches the equilibrium distribution at a final temperature T 
asymptotically, from any arbitrary initial state. The equation (2.1) can be used to 
derive the equations of motion of all the moments and correlations of U;(t). The 
simplest of these equations is the one for the first moment, which describes the order 
parameter kinetics. In order to derive this equation we need to multiply both sides 
of equation (21) by Uj and integrate with respect to all entities { U;), using free 
boundary conditions. As the distribution function and any of its first derivatives with 
respect to U, vanish when each variable U; reaches infinity, it is easy to deduce that 

where 

The above set of N coupled integro-differential equations is quite intricate to handle. 
However, as we mentioned earlier, we are interested in the kinetics of systems with 
very-long-range interactions over wide ranges of temperatures. Hence it is appropriate 
to use the MFA, which leads to a drastic simplilication of (2.2). In the MFA we assume 
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that the variable Uj at site j does not feel the fluctuation of its neighbouring sites 
but only an average local field. One may additionally use the fact that the time 
dependence of the average value ( U j ( t ) )  is independent of the site index j, thus 
yielding the equation 
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dt  E 

Whereas, in general, (Us) should be determined by going back to the Fokker-Planck 
equation (U), we make a simplifying assumption in order to treat this non-linear 
term. Recall that the detailed-balance relation constrains the distribution function 
to approach the Boltzmann distribution asymptotically. We now make the additional 
assumption that the system obeys a ‘local’ detailed-balance relation at any time during 
the relaxation process. In other words we take it that any given variable U , ( t ) ,  
subjected to the local time-dependent field H,(t), is always in equilibrium with it, 
so that the distribution function driving the var$$bie U , ( t )  at time t is given by a 
Boltzmann distribution where all the other variables are fixed at { U J + } ( i ) .  Note that 
one routinely uses the same assumption in a Metropolis algorithm while simulating 
systems away from thehnal equilibrium (Binder 1979). Tl~us we write for the non- 
linear term in (2.4) 

(U3) = J d U Us exp [ -P  (a U’ + yU4 - 2( U) U Jol 
I 

Equation (24), read in conjunction with (229, acquires a self-consistent meaning. 
How good the assumption embodied in equation (2.5) really is will be tested against 
a molecular dynamics simulation (see section 3). 

It may be remarked that one can retrieve the above result by formulating the 
problem in a somewhat different way. Instead of using the decoupling approximation 
leading to (2.4) from (2.2), we can handle in an exact way the mean-field potential 
QMF defined as 

QMF = mu2 + yu4 - 2 J U ( U )  (2.6) 

where 

J=CJo, 
i 

(2.7) 

The mean-field potential (2.6) is an exact representation of the potential (1.2) in the 
limit of long-range interactions where any site is equally coupled to all the others (see 
equation (1.3)). With reference to equation (26), the Fokker-Planck equation (2.1) 
takes the simplified form 

aw( U ,  t ) / &  = (1/€) aJ(  u,q/au (2.8) 
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J ( U , t )  = [a@, , (V) /aU]W(U, t )  + k T B W ( U , t ) / a U .  
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where 

(2.9) 
Evidently, the average. (U(t)), which appears in (26), is self-consistently determined 
by 

( U ( t ) ) =  / d U U W ( U , t ) .  (2.10) 

This point is exemplified by figure 1 in which the mean-field potential aMF is shown 
to take the form of an asymmetric double well with a marked shift in the two minima. 

U U 

U 

Figure 1. Relaxation of the distribution function in a quenching p r d u r e  from Thigh > 
T. to TQW < T. taken at different limes (intmak of 2.5 x IO’ 6t ,  where lhe time 
step of integration is 6t = 1.5 x IO-’ s). The plots result from the numerical solulion 
of equation (28). The initial distribution function is Bxed by the Bo lmann  dislribulion 
at Thigh and is given by W ( U , t  = 0) s exp[-&,j,hO~~(U)] with (U) a 1 (see 
(26)). The maxima of these functions are normalizcd to unity for the following cases: 
(o), 01 = 0.1; (b), 01 = -0.5; (c), o = -2. In all three cases we used J = 1 and 
-( = 1 with Thigh/Tc 1.2, !li,/T, s 0.3 and f = 1. 

By employing the single-site Fokker-Planck equation (U), we can proceed in 
the same manner as before, that is empIoy the same ‘local’ detailed-balance relation, 
and derive equations (24) and (2.5). We wish to emphasize once again that the 
potential (2.6), introduced here for mathematical simplicity, does indeed provide a 
valid description of mineral systems in which strain-mediated interactions are known 
to be very long range (Salje 1990). 
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3. Comparison with the molecular dynamics simulation 

In this section we solve numerically the Fbkker-Planck equation (2.8) for different on- 
site potential shapes and we also compare the results obtained from the rate equation 
of the order parameter (24) with those of molecular dynamics simulations (MDS) of 
the Hamiltonian dynamics governed by the potential (1.2) under the restriction (1.3), 
implying that each site is equally coupled to all others with constant strength. 

The Fokker-Planck equation (28) that we have derived from aMF tells us how 
the relevant distribution function evolves during relaxation processes. We solve this 
equation numerically following the techniques described in Indira (1982), and in which 
the system is allowed to evolve from T > T, towards T < T,. In figure l (a )  we 
plot the distribution function for a = 0.1, Le. a single well, at different times while 
the system undergoes relaxation. Note that one finds a single peak shifted towards 
equilibrium. In figures I(b) and (c), we present similar sketches for different a < 0, 
corresponding to double-well on-site potentials. Here, the distribution function has 
a double peak, which evolves in a different manner. Instead of a global shifting of 
the whole distribution function, the relative size of the two peaks changes during the 
evolution. The location of the two peaks is, in addition, slightly shifted as can be 
appreciated hy referring to figure 2 in which the mean-field potential OMF is shown 
to take the form of an asymmetric double well with shifted minima. However, for 
a / J  < 0 the time dependence of (U) does not affect the minima of QMF as shown 
in figure 3 and we shall use this fact later in the order/disorder h i t  of the Q4 model. 

Next, we present results of an MDS of the potential aMF (1.2) in a quenching 
procedure. In this, we have carried out the simulation on a parallel-processor array 
(AMT-DAP, Cambridge), which runs on a lattice of 16 x 16 x 16 elements with periodic 
boundary conditions. In the present study, we only consider the extreme long-range 
coupling where each site is equally coupled to all other sites with the same coupling 
constant (1.3). In the framework of the microcanonical ensemble the temperature kT 
is determined by the kinetic energy via the equipartition theorem (see Dove (1988) 
for details). The equations of motion of all entities U, are derived from (1.1) and we 
integrated them using the Beeman algorithm (Beeman 1976). The system is prepared 
at a high temperature (T > T,) and quenched to a low temperature (T < T,). In 
this study we only consider the relaxation behaviour of the order parameter 

A few comments are in order regarding the quenching methods, which can be carried 
out in two distinct ways. In the first, one rescales the average velocity at each time 
step by the factor 

We compare in figure 4 the MDS data for the order parameter relaxation with a 
numerical solution of equation (2.4), with an appropriate scaling factor E .  Despite 
the large oscillations seen in the MDS results before the system reaches equilibrium, 
the agreement between the two plots is very good. Note that one can attribute the 
oscillations observed to the coupling terms (1.3). In this the dominant mode lies 
at the zone centre where all the entities U; oscillate in phase within their on-site 
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U 

Pire 2. Effective mean-field ptential fell by a 
Fntral site while all the other sites relax. Note that 
for a shallow double well (here 01 = -2, J = 1 
and 7 = 1). the location of the two minima is 
swngly aected by the mean 6eId. The broken 
curve corresponds to saturation at T = 0. 

-4  -2 0 2 4 

U 

Figwe 3. Effective mean-field potential in the limit 
0rfJ a 0 (here P = -20, J = 1 and 7 = 1). 
The broken curve corresponds to saturation ai T = 
0. During relaxation the location of the minima is 
not signi6cantly affected by the mean field unlike 
the case in 6 g a r  2. This situation is relevant to 
orderldisorder sy-temr 

potential. The oscillations are the result of relaxation of the whole cluster which has 
an important momentum. These oscillations could have been taken into account in 
(2.4) if we had considered the momentum variables in (21). However, we remove this 
difficulty by adopting a ‘soft quenching’ method in which we decrease the temperature 
from Thi to T,,, in steps. This procedure is commonly used for MDS in glassy 
systems (b t anabe  and Bumuraya 1987). The rate of cooling is chosen in such a 
way that the system has no time to reach equilibrium at any of the intermediate steps 
during relaxation. In figure 5 we present such a plot for a = 0.1. As the cooling 
rate is much slower than in the previous technique the large oscillations of the order 
parameter disappear. 

Before closing this section we wish to point out that MDS fail to investigate 
relaxation processes when the on-site potential has a veiy deep double well, that is 
for a/ J < 0 and k T  <2: ‘hump size’. In this limit the rate of jumps across the barrier 
becomes extremely slow and cannot be studied on a computer for practical reasons. 
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TIME 

F l p m  4. Comparison befween MDS and a nu- Figure S. Comparison between MDS and numeri- 
merical solution of the r q e  equation of tbe or- cal solution (brokcn curve) for 01 = 0.1, y = 1, 
der parameter (3.4) (broken curve) for LI = -0.5, J = 1 with Zo.,/Tc zj  0.3 and T h j g h / T E  s 1.2. 
J = 1, 7 = 1. Ihe system, is initially prepared at The system is initially prepared for 5WO time steps 
T h i 8 h / ' Z  1.2 for 5wO time steps (at = 0.02) (at = 0.02)  at T b i 8 h .  The quenching is here 
and then quenched at zow/Tc 2 0.3 by -ling performed in stages of 300 intermediate steps of 
the velocity on each lime step 6t by forcibly Bxing " a n t  temperalure (of four time steps). This 
the temperature at liow. ?e mull p-led is mul l  is obtained by a single run. 
obtained by a single run. 

4. The extreme order/disorder case 

4.1. The two-state limit, 

In this section we study the effect of a very deep double-well on-site potential on 
the relaxation of the order parameter (U). This case is realized when a / J  reaches 
some large negative values. In figure 3 we have considered the case a/ J < 0 and 
we have checked that the mean field did not affect the location of the minima U, of 
the potential @MF. Even at saturation (T = 0), one finds 

U ,  = (IJ - 4 / 2 7 ) ' / *  N (la1/27)'/2. ( 4 4  
Considering again the rate equation of the order parameter (2.4) in conjunction with 
(29, we may very well assume that the range of temperature from Thigh > T, to 
T,,, < T, is always well below the hump of the double well. One can then replace 
the nearly Gaussian weight factor e x p [ - p ( a U 2  + -yU4)] in (2.5) by a delta function 
appropriate to the variable U reaching one of the two minima U,. The integral is 
then transformed ,to a, discrete summation and the left-ha,nd side of equation (25) 
leads to a hyperbolic tangent. Using' the fact that la1 > J (cf (4.1)), the expression 
(24) reduces to the rate equation 

, ,  

d(U)/d{ a (U) - U, tanh(2@JUm{U)). (4.2) 

This equation is identical to the one derived for the Glauber kinetics of a two-state 
Ising model under the MFA (Dattagupta et al 1991a, b). The essential point is that 
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the a4 model for la1 > J and kT Q ‘hump size’ (see figure 3) can, to a large 
degree of accuracy, be viewed as a discrete Ising spin system. However, the above 
simple consideration that yields (4.2) does not lead to a microscopic expression for 
the characteristic time of relaxation; one still interprets the ‘frictional’ term E in 
(28) as a phenomenological input parameter. For an improved treatment of E we 
need to consider the full Kramers problem (Dattagupta 1987) associated with the 
Iiokker-Planck equation (28) for the a‘ model, as discussed later. 

4.2. The Kmmers treatment 
In the Kramers approach (Kramers 1940) to the relaxation of systems having large 
bamers, one argues that the evolution of the distribution function is a very slow 
process. This condition is perfectly fulfilled for the a4 model in the limit of very 
deep on-site potentials rr/J B: 0. In particular, when the temperature kT is small 
compared with the ‘hump size’, the entity U is essentially localized near the bottom 
of one of the two wells: it takes a long while before U succeeds in jumping over the 
barrier. Accordingly, the distribution function turns out to be a slowly varying function 
of time and hence, from equation (29), the probability current J(  U, t )  becomes 
approximately independent of U. The probability distribution is then sharply peaked 
on the two minima, so we can define an occupational probability n,(t) (where U = 1 

. or -1 corresponds to the weil on the left or right, respectively) as 

roU,+6 

where 6 measures the spread of the distribution function and U, is defined in (4.1). 
By requiring that the probability current coincides with the rate at which n,(t) 
evolves, one can show that the rate equation of n,(t) takes the following form 
(Dattagupta 1987): 

dn,(t)/dt = ( 1 / ~ - J o ) ~ - , ( ~ )  - (1/LIO)~At) (4.4) 

where 

In the limit la1 > J the location of the minima of QMF does not depend on (U), as 
stated earlier (cf also figure 3). One can then use the mylor expansion of Q M F (  U) 
around the two minima of the double well as 

@MF(U) = aMF(uUm)  t g(u?uum) (4.7) 

where 

g(U,oU,) = 2 1 ~ ~ ( U - u U , ) ~ t 4 7 u u , ( u - u U m ) 3 + ~ ( u - u u , ) 4 .  (4.8) 
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In the expression (4.8) we have neglected the slight asymmetry resulting from the 
interaction terms (since la1 B J ) .  One can also rewrite both integrals (4.5) and (4.6) 
in the form 

S Padlewski and S Dattagupta 

1, = e x ~ l - P @ ~ ~ ( o u , , , ) l f ( a , T )  (4.9) 

IO = {exp[-P@MF(-um)l + exp[-P@MF(Um)l)h(a, (4.10) 

where 

aMF(uUm) = constant - 2JaUm(U). (4.11) 

The jumping rate can he deduced and, upon employing (4.9)-(4.11), can be shown to 
be proportional to 

wc--u = l / I u I o  = [~/~(~,T)~(~,T)I~~PI-~PJU,(U)I 
x [ e x p ( 2 ~ ~ ~ , , , ( U ) )  + exp(-2PJUm(U)j-'. (4.12) 

The characteristic time for which such an event occurs is simply given by the prefactor: 

E = f ( a , T ) h ( a , T )  = d U  exp[-PdU,Um)l 

(4.13) 

For the given range of parameters, that is a/J Q 0 and IcT c 'hump size', for 
which the Kramers treatment is justified, the above quantity is very large and, corre- 
spondingly, the jumping rate is very small. Finally, by requiring that 

(U) = I.+(t) - .-(t)l%l (4.14) 

and combining (4.13) with (4.4). and also using the jumping rate (4.12), one retrieves 
the Glauber rate equation of a two-state king system. 

5. The conserved order parameter 

Our treatment thus far has been restricted to non-conserved order parameter kinetics. 
For the sake of completeness, we discuss in this section the relaxation behaviour of 
the Q 4  model with a conserved order parameter. In the order/disorder limit we 
retrieve the 1966 Kawasaki rate equation of a two-state king system. 

With a conserved order parameter, a given site Ui does not have the freedom to 
choose its state irrespective of the other sites. In particular, in an alloy, if one replaces 
an atom A by B, one has to replace an atom B somewhere else simultaneously by A 
Several other instances of conserved order parameter kinetics have been discussed in 
our earlier work (Dattagupta et af 1591a, b). In the latter, however, we based our 
treatment on a discrete king spin system, whereas for the cP4 model we have to deal 
with a continuous variable Vi for which the conservation condition is stated as 

vi = constant. 
ri, 
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In particular, the above constraint can be satisfied if one establishes a pairing between 
sites, such that if Vi increases by Ai,li,  another variable Uli must simultaneously de- 
crease by the same quantity (see, for instance, Gunton and Droz 1983). Schematically, 
one means 

U i - U i + A i , i  U , i A U i i - A i , ; .  ( 5 4  
The transformation (5.2) describes the well known Kawasaki process. Such a pairing 
in alloys has an obvious physical interpretation. Suppose that the probability distribu- 
tion associated with Vi is peaked around either the left-hand or the right-hand wells 
corresponding to an A or a B atom, respectively (figure 6). If one considers the pair 
of sites shown in figure 6 the process described in (5.2) corresponds to the situation 
depicted in figure 7. As one entity Vi goes cont inuow from the left-hand to the 
right-hand side of the double-well potential, that is the atom A transforms itself to B, 
the first-neighbour entity Vli moves in the opposite direction, that is B changes into 
A. Note that such a description is more realistic for an alloy than that provided by a 
simple Ising system. In the Ising model a flip-flop process stands for modelling the 
exchange between two atoms A and B. Hence this model does not take into account 
the microscopic mechanism that enables the system to realize such an exchange. In 
particular, no attention is paid to the crossing of the atoms that we have illustrated 
in figure 7. 

0 0  0 0  

Flgure 6. Pair of sites U; and Ut; connected to 
each other in an exchange process The variable 
U; can represent the occupation of an atom A or 
B at i depending on whether U; falls into the right 
or left side of the double-well on-site polenlial. 

o m 0  o m 0  o m 0  
m o m  4%- m m o  

. 

o e o  0 . 0  0.0 

a b C 

Figom 7. Exchange process b e w e n  two first neighboun A and B in an alloy. Nole 
that such a process a, b, c involves a continuous sequence, which can be well described 
within a model while the king Aipfiop process can only model the initial and final 
states a and c 

The rate equation of the conserved order parameter can be deduced by employing 
a treatment described in detail in Langer (1971). One needs to consider the rate 
equation 

(5.3) 
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where z is the number of sites Uii that can participate in the exchange process with 
the central site Vi .  This equation is very similar to the phenomenological model 
developed by Cahn and Hilliard in 19.58 (see Langer 1971) where instead of the 
D4 potential, they consider inside the brackets '0' a Ginzburg-Landau freeenergy 
functional with respect to the fluctuation of the order parameter. This model has been 
widely employed to investigate the relaxation behaviour in relation to the spinodal 
decomposition with continuous order parameter (Mazenko and Valls 1987, Rogers 
et al 1988). We must, however, emphasize once more that while most studies are 
devoted to dynamical critical phenomena we are more often than not interested in 
the kinetics far away from the critical temperature. 

In what follows we explicitly consider the rate equation in the order/disorder 
limit. We assume, as we did in section 2, that the system is in a local detailed-balance 
condition at any time during the relaxation process. The equation (5.3) takes the 
form 

where 

(5.4) 

In the order/disorder limit n/J < 0 the exponential is sharply peaked when the 
variable Ui reaches uiUm where ui = zk1 (see subsection 4.1). The equation (5.5) is 
non-zero wheg the sites i and li have opposite values of ui. By isolating the terms 
that depend on U, and Uri in the exponential (5.5), one finds 

Thii can be inserted in (5.4), giving 

(5.7) 

The above expression is the rate equation for a conserved two-state king system 
(Binder 1974). The jumping rate e-' in (5.3) is purely phenomenological but can be 
calculated with the aid of the Kramers treatment that we employed in section 4. 
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6. Summary 

We have studied the relaxation behaviour of a Q4 model on a lattice with conserved 
and nonanserved order parameter. For the nonansewed order parameter we have 
deduced, using the Fokker-Planck equation, a rate equation for the order parameter. 
The solution bemmes transparent in the MFA, which is a very good approximation for 
systems with long-range interactions. The result derived is recovered by considering 
an approximate potential a,, where each nriable Vi is supposedly coupled with the 
same paitwise interaction J / N  with all the other N sites. We have then compared 
the predicted results with the MDS of QMF and found very good agreement. Next, we 
have also investigated the relaxation effecls when the on-site potential is characterized 
by a very deep double well, The rate equation of the order parameter is shown to 
take the form of the much studied GIauber rate equation for an king system. This 
situation occurs for a/ J < 0 and kT < ‘hump size’. Finally, in this limiting situation, 
we have followed a Kramers treatment, and deduced the time scale associated with 
the relaxation, that is the jumping rate from one well to the other; it is a small 
quantity, as expected. We have also considered the conserved order parameter relaxa- 
tion behaviour in the orderldisorder limit. As expected, the well known Kawasaki 
rate equation is recovered. The MDS results lend credence to the MFA for systems 
with long-range interactions. On the other hand, the MDS have limited applicability, 
especially for deep on-site potentials and one must find an alternative approach. Using 
the MFA we have shown analytically how the relaxation kinetics for the continuum a4 
model, for deep on-site potentials, become nearly the same as that for the discrete 
two-state Ising model. While this result was not unexpected, our explicit derivation 
gives a clear picture of the parameter values a, 7 and J for which the crossover from 
continuum to discrete-lie behaviour occurs. This is useful, because in the ‘discrete’ 
domain one may resort to other methods of attack of the problem such as Monte 
Carlo techniques. Thus a combination of analytical, molecular dynamics simulation 
and Monte Carlo approaches would enable a comprehensive analysis of the kinetics of 
the Q4 model to be performed over a wide range of the parameters that characterize 
different relaxational aspects of the structural phase transitions. 
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